Rational Homotopy Type of Subspace Arrangements with a Geometric Lattice

نویسنده

  • GERY DEBONGNIE
چکیده

Let A = {x1, . . . , xn} be a subspace arrangement with a geometric lattice such that codim(x) ≥ 2 for every x ∈ A. Using rational homotopy theory, we prove that the complement M(A) is rationally elliptic if and only if the sum x 1 + . . . + x n is a direct sum. The homotopy type of M(A) is also given : it is a product of odd dimensional spheres. Finally, some other equivalent conditions are given, such as Poincaré duality. Those results give a complete description of arrangements (with geometric lattice and with the codimension condition on the subspaces) such that M(A) is rationally elliptic, and show that most arrangements have an hyperbolic complement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formality of the Complements of Subspace Arrangements with Geometric Lattices

We show that, for an arrangement of subspaces in a complex vector space with geometric intersection lattice, the complement of the arrangement is formal. We prove that the Morgan rational model for such an arrangement complement is formal as a differential graded algebra.

متن کامل

Topological Representations of Matroids

One of the foundations of oriented matroid theory is the topological representation theorem of Folkman and Lawrence [8]. It says that an oriented (simple) matroid can be realized uniquely as an arrangement of pseudospheres. That there is no similar interpretation for the class of all matroids has been taken for granted. For instance, “A non-coordinatizable matroid of abstract origin may be thou...

متن کامل

Homotopy Lie Algebra of the Complements of Subspace Arrangements with Geometric Lattices

Let A be a geometric arrangement such that codim(x) ≥ 2 for every x ∈ A. We prove that, if the complement space M(A) is rationally hyperbolic, then there exists an injective map L(u, v) → π⋆(ΩM(A)) ⊗ Q.

متن کامل

A Comparison of Vassiliev and Ziegler-živaljević Models for Homotopy Types of Subspace Arrangements

In this paper we represent the Vassiliev model for the homotopy type of the one-point compactification of subspace arrangements as a homotopy colimit of an appropriate diagram over the nerve complex of the intersection semilattice of the arrangement. Furthermore, using a generalization of simplicial collapses to diagrams of topological spaces over simplicial complexes, we construct an explicit ...

متن کامل

Topology of real coordinate arrangements

We prove that if a simplicial complex ∆ is (nonpure) shellable, then the intersection lattice for the corresponding real coordinate subspace arrangement A∆ is homotopy equivalent to the link of the intersection of all facets of ∆. As a consequence, we show that the singularity link of A∆ is homotopy equivalent to a wedge of spheres. We also show that the complement of A∆ is homotopy equivalent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007